R18

4M

O.P. Code: 18ME0348

Reg. No:

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech I Year I Semester Supplementary Examinations Feb-2021 THERMAL & FLUID ENGINEERING

(Electrical and Electronics Engineering)

Time: 3 hours

Max. Marks: 60

PART-A

(Answer all the Questions $5 \times 2 = 10 \text{ Marks}$)

1 a Define Thermal Power.

b Define System.

c Define Dryness Fraction.

d What are the assumptions of Bernoulli's Equation?

e Explain pipes in parallel and series.

2M

2M

PART-B

(Answer all Five Units $5 \times 10 = 50$ Marks)

UNIT-I

2 Differentiate between the boiler and condenser.
10M

OR

3 Explain the factor to be considered for selection of site for steam power plant.
10M

UNIT-II

- 4 a Define property. Distinguish between intensive and extensive property. 5M
 - b What do you understand by path function and point function
 5M

OR

- 5 a What are the limitations of the First law of Thermodynamics 5M
 - b Establish the equivalence of Kelvin-Planck and Clausius statement 5M

UNIT-III

- 6 a A steam power plant works between 40 bar and 0.05 bar. If the steam supplied is dry saturated and the cycle of operation is Rankine, Find (i) cycle efficiency,
 - (ii) Specific steam consumption.
 b Explain the various operation of a Carnot cycle. Also represent it on T-S and P-V diagrams.

OR

- 7 a Comparison between Rankine cycle and Carnot cycle. 6M
 - **b** Give the Comparison between fire tube and water tube Boiler.

UNIT-IV

- 8 a Define the equation of continuity. Obtain an express for continuity equation for a one-dimensional flow.
 - b pipe 300 m. long has a slope of 1 in 100 and tapers from 1.2 m diameter at the high end to 0.6 m diameter at the low end. The rate of flow of water through the pipe is 0.10 m3/sec. If the pressure at the high end is 73.575 kPa, find the pressure at the low end. Neglect losses.

Q.P. Code: 18ME0348

5M

OR

9	Water is flowing through a pipe having diameters 30 cm and 15 cm at the bottom and upper end respectively. The intensity of pressure at the bottom end is 29.43 N/cm2and the pressure at the upper end is 14.715 N/cm2. Determine the difference in datum head if the rate of flow through pipe is 50 lit/s.	5M
	Explain the types of fluid flows.	5M
	UNIT-V	
10	Horizontal pipe carries water at rate of 0.04m3/s. its diameter is 300mm reduced to 150mm. calculate the pressure loss across contraction. Take co-efficient of contraction as 0.62.	5M
	What is a venturimeter? Derive an expression for the discharge through a venturimeter.	5M
	OR	
11	What are minor losses? Under what circumstances they are negligible	5M

END

b Derive equation for loss of head due to sudden enlargement.